Deep Learning Basics - Linear Perceptron, Python example

Naomi Fridman
7 min readOct 8, 2018

--

Short introduction to the basic concept of learning and Deep learning. Here we start with the concept of learning explained with a hands on linear perceptron coded example. Source code available at https://github.com/naomifridman/Introduction_to_deep_learning

Linear perceptron and the concept of learning

For a lecture I gave as introduction to deep learning, I coded all the examples I needed. Personally I like to view things from code perspective, so to all those understand staff through code and some mathematical formulation, enjoy. Full code in git.

In this first chapter, the discussion is on the structure of a neuron and the algorithmical concept concept behind learning. The coded example single linear neuron or perceptron, learning the logic OR and AND Gates.

Inspiration — The Biological Neuron Model

The Neuron cell takes a binary input (of electrical signals), process it, and produce binary output (of electrical signal).

Neuron Input
A neuron accepts inputs, usually from other neurons, through its dendrites, that are connect to other neurons via a gap called a synapse which assigns a “weight” to any specific input.
All of these inputs are processed together in the cell body (soma)

Neuron Output
The Neurons process the combination of the inputs, and if it exceeds a certain threshold, an output signal is produced (the neuron “fires”)
When the neuron fires, the signal (output) travels along the axon to the synapse terminals,there it assigned a “weight”, and continue to the dendrites of other neurons through the synapse.
With this biological model in mind, we can define a mathematical artificial neuron.

Perceptron — An Artificial Neural Network

As in the Biological model, we want the neuron to intake an inputs, process it (weighted sum) and if it exceeds a threshold, the neuron will produce an output.

Decision Units — Activation functions

There are many options for decision units, and we will see later. Lets start with the basic one, defined by McCulloch-Pitts (1943)

Binary threshold unit

uplot.drow_binary_threshold()

Learning the Bias

Now we need to learn the weights and the bias. But we can use a trick, to avoid separate scheme, for learning the bias.

This way, we can learn the bias as it was part of the weights.

Learning weights

The idea is to go over the samples, and correct/update the weights according to the results on the samples.

Update the weights

There are many strategies to update the weights, and we will see them later.

Perpetron Example — Logic OR

Let’s build a Perceptron, that performs a logic OR:

def binary_threshold_activation(Xw):
yhat = 0
if(Xw > 0):
yhat = 1
return yhat
def predict(X, w):
yhat = 0
z = np.dot(X, w)
if(z > 0):
yhat = 1
return yhat
def perceptron_train(X, Y): w = np.zeros(len(X[0]))
n = 5
errors = []

for t in range(n):

print('--------------------------\nepoch: ' , t)
total_error = 0

for i in range(X.shape[0]):

z = np.dot(X[i], w)
yhat = binary_threshold_activation(z)

if (yhat == Y[i]):
print(i,'x:',X[i],'w:', w,'Wx: ', np.dot(X[i], w),
'y:',Y[i], end=' ')
print('correct no update')
continue

elif (yhat < Y[i]):
total_error += 1
print(i, 'yhat<y', 'X:',X[i],'w:', w,'Wx:',
np.dot(X[i], w), 'y:',Y[i], end=' ')


w = w + X[i]
print('=> W updated:', w)

elif (yhat > Y[i]):
total_error += 1
print(i, 'yhat>y' ,'X:',X[i],'w:', w,'Wx:',
np.dot(X[i], w), 'y:',Y[i] ,end = ' ')

w = w - X[i]
print('=> W updated:', w)

errors.append(total_error)

plt.plot(errors)
plt.xlabel('Epoch')
plt.ylabel('Total Loss')

return w
X = [[1,0,0],
[1,1,0],
[1,0,1],
[1,1,1]]
y = [0, 1, 1, 1]w=perceptron_train(np.array(X),y)
print('Learned Weights:', w)
--------------------------
epoch: 0
0 x: [1 0 0] w: [0. 0. 0.] Wx: 0.0 y: 0 correct no update
1 yhat<y X: [1 1 0] w: [0. 0. 0.] Wx: 0.0 y: 1 => W updated: [1. 1. 0.]
2 x: [1 0 1] w: [1. 1. 0.] Wx: 1.0 y: 1 correct no update
3 x: [1 1 1] w: [1. 1. 0.] Wx: 2.0 y: 1 correct no update
--------------------------
epoch: 1
0 yhat>y X: [1 0 0] w: [1. 1. 0.] Wx: 1.0 y: 0 => W updated: [0. 1. 0.]
1 x: [1 1 0] w: [0. 1. 0.] Wx: 1.0 y: 1 correct no update
2 yhat<y X: [1 0 1] w: [0. 1. 0.] Wx: 0.0 y: 1 => W updated: [1. 1. 1.]
3 x: [1 1 1] w: [1. 1. 1.] Wx: 3.0 y: 1 correct no update
--------------------------
epoch: 2
0 yhat>y X: [1 0 0] w: [1. 1. 1.] Wx: 1.0 y: 0 => W updated: [0. 1. 1.]
1 x: [1 1 0] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
2 x: [1 0 1] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
3 x: [1 1 1] w: [0. 1. 1.] Wx: 2.0 y: 1 correct no update
--------------------------
epoch: 3
0 x: [1 0 0] w: [0. 1. 1.] Wx: 0.0 y: 0 correct no update
1 x: [1 1 0] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
2 x: [1 0 1] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
3 x: [1 1 1] w: [0. 1. 1.] Wx: 2.0 y: 1 correct no update
--------------------------
epoch: 4
0 x: [1 0 0] w: [0. 1. 1.] Wx: 0.0 y: 0 correct no update
1 x: [1 1 0] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
2 x: [1 0 1] w: [0. 1. 1.] Wx: 1.0 y: 1 correct no update
3 x: [1 1 1] w: [0. 1. 1.] Wx: 2.0 y: 1 correct no update
Learned Weights: [0. 1. 1.]

Predict OR with The learned weights of the Perceptron

for i in range(4):
print(X[i], X[i][1],' OR ', X[i][2],' = ', predict(X[i],w))
[1, 0, 0] 0 OR 0 = 0
[1, 1, 0] 1 OR 0 = 1
[1, 0, 1] 0 OR 1 = 1
[1, 1, 1] 1 OR 1 = 1

Re-train Perceptron to Perform logic AND

Same perceptron,can learn to perform logic AND, When its trained on the correct data:

X = [[1,0,0],
[1,1,0],
[1,0,1],
[1,1,1]]

y = [0, 0, 0, 1]w = perceptron_train(np.array(X),y)
print('Learned Weights:', w)
--------------------------
epoch: 0
0 x: [1 0 0] w: [0. 0. 0.] Wx: 0.0 y: 0 correct no update
1 x: [1 1 0] w: [0. 0. 0.] Wx: 0.0 y: 0 correct no update
2 x: [1 0 1] w: [0. 0. 0.] Wx: 0.0 y: 0 correct no update
3 yhat<y X: [1 1 1] w: [0. 0. 0.] Wx: 0.0 y: 1 => W updated: [1. 1. 1.]
--------------------------
epoch: 1
0 yhat>y X: [1 0 0] w: [1. 1. 1.] Wx: 1.0 y: 0 => W updated: [0. 1. 1.]
1 yhat>y X: [1 1 0] w: [0. 1. 1.] Wx: 1.0 y: 0 => W updated: [-1. 0. 1.]
2 x: [1 0 1] w: [-1. 0. 1.] Wx: 0.0 y: 0 correct no update
3 yhat<y X: [1 1 1] w: [-1. 0. 1.] Wx: 0.0 y: 1 => W updated: [0. 1. 2.]
--------------------------
epoch: 2
0 x: [1 0 0] w: [0. 1. 2.] Wx: 0.0 y: 0 correct no update
1 yhat>y X: [1 1 0] w: [0. 1. 2.] Wx: 1.0 y: 0 => W updated: [-1. 0. 2.]
2 yhat>y X: [1 0 1] w: [-1. 0. 2.] Wx: 1.0 y: 0 => W updated: [-2. 0. 1.]
3 yhat<y X: [1 1 1] w: [-2. 0. 1.] Wx: -1.0 y: 1 => W updated: [-1. 1. 2.]
--------------------------
epoch: 3
0 x: [1 0 0] w: [-1. 1. 2.] Wx: -1.0 y: 0 correct no update
1 x: [1 1 0] w: [-1. 1. 2.] Wx: 0.0 y: 0 correct no update
2 yhat>y X: [1 0 1] w: [-1. 1. 2.] Wx: 1.0 y: 0 => W updated: [-2. 1. 1.]
3 yhat<y X: [1 1 1] w: [-2. 1. 1.] Wx: 0.0 y: 1 => W updated: [-1. 2. 2.]
--------------------------
epoch: 4
0 x: [1 0 0] w: [-1. 2. 2.] Wx: -1.0 y: 0 correct no update
1 yhat>y X: [1 1 0] w: [-1. 2. 2.] Wx: 1.0 y: 0 => W updated: [-2. 1. 2.]
2 x: [1 0 1] w: [-2. 1. 2.] Wx: 0.0 y: 0 correct no update
3 x: [1 1 1] w: [-2. 1. 2.] Wx: 1.0 y: 1 correct no update
Learned Weights: [-2. 1. 2.]

Predict AND with The learned weights of the Perceptron

for i in range(4):
print(X[i], X[i][1],' OR ', X[i][2],' = ', predict(X[i],w))
[1, 0, 0] 0 OR 0 = 0
[1, 1, 0] 1 OR 0 = 0
[1, 0, 1] 0 OR 1 = 0
[1, 1, 1] 1 OR 1 = 1

--

--

Naomi Fridman
Naomi Fridman

Written by Naomi Fridman

MSc. Mathematics. Data Scientist. Love Deep learning ,Machine learning , Mathematics and Surfing. https://github.com/naomifridman

Responses (1)